Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Viruses ; 15(3)2023 03 08.
Article in English | MEDLINE | ID: covidwho-2282298

ABSTRACT

In patients with multiple myeloma (MM), SARS-CoV-2 infection has been associated with a severe clinical course and high mortality rates due to the concomitant disease- and treatment-related immunosuppression. Specific antiviral treatment involves viral replication control with monoclonal antibodies and antivirals, including molnupiravir and the ritonavir-boosted nirmatrelvir. This prospective study investigated the effect of these two agents on SARS-CoV-2 infection severity and mortality in patients with MM. Patients received either ritonavir-nirmatrelvir or molnupiravir. Baseline demographic and clinical characteristics, as well as levels of neutralizing antibodies (NAbs), were compared. A total of 139 patients was treated with ritonavir-nirmatrelvir while the remaining 30 patients were treated with molnupiravir. In total, 149 patients (88.2%) had a mild infection, 15 (8.9%) had a moderate infection, and five (3%) had severe COVID-19. No differences in the severity of COVID-19-related outcomes were observed between the two antivirals. Patients with severe disease had lower neutralizing antibody levels before the COVID-19 infection compared to patients with mild disease (p = 0.04). Regarding treatment, it was observed that patients receiving belantamab mafodotin had a higher risk of severe COVID-19 (p < 0.001) in the univariate analysis. In conclusion, ritonavir-nirmatrelvir and molnupiravirmay prevent severe disease in MM patients with SARS-CoV-2 infection. This prospective study indicated the comparable effects of the two treatment options, providing an insight for further research in preventing severe COVID-19 in patients with hematologic malignancies.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Antiviral Agents/therapeutic use , Prospective Studies , Ritonavir/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Neutralizing
2.
Hemasphere ; 6(8): e764, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2190902

ABSTRACT

COVID-19 vaccination leads to a less intense humoral response in patients with multiple myeloma (MM) compared with healthy individuals, whereas the SARS-CoV-2-specific immunity fades over time. The purpose of this study was to explore the kinetics of SARS-CoV-2 neutralizing antibodies (NAbs) in patients with MM after vaccination with the BNT162b2 mRNA vaccine, focusing on their response before (B4D) and at 1 month after the fourth vaccination (M1P4D). Overall, 201 patients with a median age of 67 years were included, whereas 114 (56.7%) were men. The median NAbs levels B4D were 80.0% (±3.5%) and at M1P4D they increased to a median value of 96.1% (±3.7%). The NAb values at M1P4D were similar to those at 1 month post the third dose and superior to all previous timepoints. At M1P4D, the NAbs levels of all the treatment groups increased, apart from the anti-BCMA group. A significant increase in median NAbs values was observed for those receiving CD38-based treatment (n = 43, from 71.0% B4D to 96.0% at M1P4D) and those who did not receive CD38- or BCMA-targeted therapy (n = 137, from 89.6% B4D to 96.3% at M1P4D). Regarding the patients under BCMA-based therapy (n = 21), there was no remarkable increase in NAbs values following the second booster shot (from 3.0% B4D to 4.0% at M1P4D). In conclusion, booster vaccination with the BNT162b2 results in a substantially improved humoral response against SARS-CoV-2 in patients with MM. Anti-BCMA treatment remains an adverse predictive factor for NAbs response; thus, tailored prevention measures should be considered for this patient subgroup.

5.
Am J Hematol ; 97(10): 1300-1308, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1955886

ABSTRACT

Patients with B-cell malignancies have suboptimal immune responses to SARS-CoV-2 vaccination and are a high-risk population for severe COVID19 disease. We evaluated the effect of a third booster BNT162b2 vaccine on the kinetics of anti- SARS-CoV-2 neutralizing antibody (NAbs) titers in patients with B-cell malignancies. Patients with NHL (n = 54) Waldenström's macroglobulinemia (n = 90) and chronic lymphocytic leukemia (n = 49) enrolled in the ongoing NCT04743388 study and compared against matched healthy controls. All patient groups had significantly lower NAbs compared to controls at all time points. 1 month post the third dose (M1P3D) NAbs increased significantly compared to previous time points (median NAbs 77.9%, p < .05 for all comparisons) in all patients. NAbs ≥ 50% were seen in 59.1% of patients, 34.5% of patients with suboptimal responses post-second dose, elicited a protective NAb titer ≥50%. Active treatment, rituximab, and BTKi treatment were the most important prognostic factors for a poor NAb response at 1MP3D; only 25.8% of patients on active treatment had NAbs ≥ 50%. No significant between-group differences were observed. Patients with B-cell malignancies have inferior humoral responses against SARS-CoV-2 and booster dose enhances the NAb response in a proportion of these patients.


Subject(s)
COVID-19 , Neoplasms , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
7.
Am J Hematol ; 97(1): 119-128, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1479374

ABSTRACT

Coronavirus disease 19 (COVID-19) is considered a multisystemic disease. Several studies have reported persistent symptoms or late-onset complications after acute COVID-19, including post-COVID-19 hematological disorders. COVID-19-induced coagulopathy, an immunothrombotic state, has been linked to thromboembolic and hemorrhagic events. Late-onset thrombocytopenia related to immune system dysregulation has also been reported as a rare manifestation post COVID-19. Close monitoring of laboratory dynamics is considered essential to identify timely abnormal values that need further investigation, providing supportive care whenever indicated. The role of hematologists is essential in terms of the multidisciplinary approach of long COVID-19. This review summarizes all the available evidence on post-acute COVID-19 hematological complications.


Subject(s)
COVID-19/complications , Hematologic Diseases/etiology , Animals , COVID-19/etiology , COVID-19/therapy , Disease Management , Hematologic Diseases/therapy , Hemorrhagic Disorders/etiology , Hemorrhagic Disorders/therapy , Humans , SARS-CoV-2/isolation & purification , Thrombocytopenia/etiology , Thrombocytopenia/therapy , Thromboembolism/etiology , Thromboembolism/therapy , Thrombosis/etiology , Thrombosis/therapy , Post-Acute COVID-19 Syndrome
8.
Blood Adv ; 5(21): 4398-4405, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1416799

ABSTRACT

Immunocompromised patients with hematologic malignancies are more susceptible to COVID-19 and at higher risk of severe complications and worse outcomes compared with the general population. In this context, we evaluated the humoral response by determining the titers of neutralizing antibodies (NAbs) against SARS-CoV-2 in patients with Waldenström macroglobulinemia (WM) after vaccination with the BNT162b2 or AZD1222 vaccine. A US Food and Drug Administration-approved enzyme-linked immunosorbent assay-based methodology was implemented to evaluate NAbs on the day of the first vaccine shot, as well as on days 22 and 50 afterward. A total of 106 patients with WM (43% men; median age, 73 years) and 212 healthy controls (46% men; median age, 66 years) who were vaccinated during the same period at the same center were enrolled in the study (which is registered at www.clinicaltrials.gov as #NCT04743388). Our data indicate that vaccination with either 2 doses of the BNT162b2 or 1 dose of the AZD1222 vaccine leads to lower production of NAbs against SARS-CoV-2 in patients with WM compared with controls on days 22 and 50 (P < .001 for all comparisons). Disease-related immune dysregulation and therapy-related immunosuppression are involved in the low humoral response. Importantly, active treatment with either rituximab or Bruton's tyrosine kinase inhibitors was proven as an independent prognostic factor for suboptimal antibody response after vaccination. In conclusion, patients with WM have low humoral response after COVID-19 vaccination, which underlines the need for timely vaccination ideally during a treatment-free period and for continuous vigilance on infection control measures.


Subject(s)
COVID-19 , Waldenstrom Macroglobulinemia , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Female , Humans , Male , Prospective Studies , SARS-CoV-2 , United States , Vaccination
9.
Br J Haematol ; 196(2): 356-359, 2022 01.
Article in English | MEDLINE | ID: covidwho-1412420

ABSTRACT

Patients with multiple myeloma (MM) have a suboptimal antibody response following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lower seroconversion rates following coronavirus disease 2019 (COVID-19) compared with healthy individuals. In this context, we evaluated the development of neutralising antibodies (NAbs) against SARS-CoV-2 in non-vaccinated patients with MM and COVID-19 compared with patients after vaccination with two doses of the BNT162b2 vaccine. Serum was collected either four weeks post confirmed diagnosis or four weeks post a second dose of BNT162b2. NAbs were measured with a Food and Drug Administration-approved enzyme-linked immunosorbent assay methodology. Thirty-five patients with COVID-19 and MM along with 35 matched patients were included. The two groups did not differ in age, sex, body mass index, prior lines of therapy, disease status, lymphocyte count, immunoglobulin levels and comorbidities. Patients with MM and COVID-19 showed a superior humoral response compared with vaccinated patients with MM. The median (interquartile range) NAb titre was 87·6% (71·6-94%) and 58·7% (21·4-91·8%) for COVID-19-positive and vaccinated patients, respectively (P = 0·01).Importantly, there was no difference in NAb production between COVID-19-positive and vaccinated patients who did not receive any treatment (median NAb 85·1% vs 91·7%, P = 0·14). In conclusion, our data indicate that vaccinated patients with MM on treatment without prior COVID-19 should be considered for booster vaccine doses.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , BNT162 Vaccine/immunology , COVID-19/immunology , Multiple Myeloma/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/complications , COVID-19/prevention & control , COVID-19 Serological Testing , Epitopes/immunology , Female , Humans , Immunization, Secondary , Immunocompromised Host , Immunogenicity, Vaccine , Male , Middle Aged , Multiple Myeloma/complications , Prospective Studies , Vaccination
10.
Cancers (Basel) ; 13(17)2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1390540

ABSTRACT

Emerging data suggest suboptimal antibody responses to COVID-19 vaccination in patients with hematological malignancies. We evaluated the humoral response following the BNT162b2 vaccine in patients with chronic lymphocytic leukemia (CLL), non-Hodgkin's lymphoma (NHL), and Hodgkin's lymphoma (HL). An FDA-approved, ELISA-based methodology was implemented to evaluate the titers of neutralizing antibodies (NAbs) against SARS-CoV-2 on day 1 of the first vaccine, and afterwards on day 22 and 50. One hundred and thirty-two patients with CLL/lymphomas and 214 healthy matched controls vaccinated during the same period, at the same center were enrolled in the study (NCT04743388). Vaccination with two doses of the BNT162b2 vaccine led to lower production of NAbs against SARS-CoV-2 in patients with CLL/lymphomas compared with controls both on day 22 and on day 50 (p < 0.001 for all comparisons). Disease-related immune dysregulation and therapy-related immunosuppression are involved in the low humoral response. Importantly, active treatment with Rituximab, Bruton's tyrosine kinase inhibitors, or chemotherapy was an independent prognostic factor for suboptimal antibody response. Patients with HL showed superior humoral responses to the NHL/CLL subgroups. In conclusion, patients with CLL/lymphomas have low humoral response following COVID-19 vaccination, underlining the need for timely vaccination ideally during a treatment-free period and for continuous vigilance on infection control measures.

11.
Blood Cancer J ; 11(8): 138, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338528

ABSTRACT

Recent data suggest a suboptimal antibody response to COVID-19 vaccination in patients with hematological malignancies. Neutralizing antibodies (NAbs) against SARS-CoV-2 were evaluated in 276 patients with plasma cell neoplasms after vaccination with either the BNT162b2 or the AZD1222 vaccine, on days 1 (before the first vaccine shot), 22, and 50. Patients with MM (n = 213), SMM (n = 38), and MGUS (n = 25) and 226 healthy controls were enrolled in the study (NCT04743388). Vaccination with either two doses of the BNT162b2 or one dose of the AZD1222 vaccine leads to lower production of NAbs in patients with MM compared with controls both on day 22 and on day 50 (p < 0.001 for all comparisons). Furthermore, MM patients showed an inferior NAb response compared with MGUS on day 22 (p = 0.009) and on day 50 (p = 0.003). Importantly, active treatment with either anti-CD38 monoclonal antibodies (Mabs) or belantamab mafodotin and lymphopenia at the time of vaccination were independent prognostic factors for suboptimal antibody response following vaccination. In conclusion, MM patients have low humoral response following SARS-CoV-2 vaccination, especially under treatment with anti-CD38 or belamaf. This underlines the need for timely vaccination, possibly during a treatment-free period, and for continuous vigilance on infection control measures in non-responders.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Multiple Myeloma , SARS-CoV-2 , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Humans , Male , Middle Aged , Multiple Myeloma/blood , Multiple Myeloma/immunology , Prospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
14.
Vaccines (Basel) ; 9(7)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1289048

ABSTRACT

It is unclear whether the ChAdOx1 nCov-19 vaccine can induce the development of anti-PF4 antibodies in vaccinated individuals who have not developed thrombosis. The aim of this prospective study was to evaluate the presence of antibodies against heparin/PF4 in adults who received a first dose of the ChAdOx1 nCov-19 vaccine, and correlate them with clinical data and antibody responses to the vaccine. We detected non-platelet activating anti-PF4 antibodies in 67% (29/43) of the vaccinated individuals on day 22 following the first dose of the ChAdOx1 nCov-19 vaccine, though these were detected in low titers. Furthermore, there was no correlation between the presence of anti-PF4 IgG antibodies and the baseline clinical characteristics of the patients. Our findings suggest that the ChAdOx1 nCov-19 vaccine can elicit anti-PF4 antibody production even in recipients without a clinical manifestation of thrombosis. The presence of anti-PF4 antibodies was not sufficient to provoke clinically evident thrombosis. Our results offer an important insight into the ongoing investigations regarding the underlying multifactorial pathophysiology of thrombotic events induced by the ChAdOx1 nCov-19 vaccine.

15.
J Infect ; 83(1): 1-16, 2021 07.
Article in English | MEDLINE | ID: covidwho-1228080

ABSTRACT

OBJECTIVES: "Long COVID", a term coined by COVID-19 survivors, describes persistent or new symptoms in a subset of patients who have recovered from acute illness. Globally, the population of people infected with SARS-CoV-2 continues to expand rapidly, necessitating the need for a more thorough understanding of the array of potential sequelae of COVID-19. The multisystemic aspects of acute COVID-19 have been the subject of intense investigation, but the long-term complications remain poorly understood. Emerging data from lay press, social media, commentaries, and emerging scientific reports suggest that some COVID-19 survivors experience organ impairment and/or debilitating chronic symptoms, at times protean in nature, which impact their quality of life. METHODS/RESULTS: In this review, by addressing separately each body system, we describe the pleiotropic manifestations reported post COVID-19, their putative pathophysiology and risk factors, and attempt to offer guidance regarding work-up, follow-up and management strategies. Long term sequelae involve all systems with a negative impact on mental health, well-being and quality of life, while a subset of patients, report debilitating chronic fatigue, with or without other fluctuating or persistent symptoms, such as pain or cognitive dysfunction. Although the pathogenesis is unclear, residual damage from acute infection, persistent immune activation, mental factors, or unmasking of underlying co-morbidities are considered as drivers. Comparing long COVID with other post viral chronic syndromes may help to contextualize the complex somatic and emotional sequalae of acute COVID-19. The pace of recovery of different aspects of the syndrome remains unclear as the pandemic began only a year ago. CONCLUSIONS: Early recognition of long-term effects and thorough follow-up through dedicated multidisciplinary outpatient clinics with a carefully integrated research agenda are essential for treating COVID-19 survivors holistically.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Pandemics , Quality of Life , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
16.
Clin Exp Med ; 21(2): 167-179, 2021 May.
Article in English | MEDLINE | ID: covidwho-893292

ABSTRACT

The new type of coronavirus (COVID-19), SARS-CoV-2 originated from Wuhan, China and has led to a worldwide pandemic. COVID-19 is a novel emerging infectious disease caused by SARS-CoV-2 characterized as atypical pneumonia. As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. The typical manifestations of COVID-19 include fever, sore throat, fatigue, cough, and dyspnoea combined with recent exposure. Most of the patients with COVID-19 have mild or moderate disease, however up to 5-10% present with severe and even life-threatening disease course. The mortality rates are approximately 2%. Therefore, there is an urgent need for effective and specific antiviral treatment. Currently, supportive care measures such as ventilation oxygenation and fluid management remain the standard of care. Several clinical trials are currently trying to identify the most potent drug or combination against the disease, and it is strongly recommended to enroll patients into ongoing trials. Antivirals can be proven as safe and effective only in the context of randomized clinical trials. Currently several agents such as chloroquine, hydroxychloroquine, favipiravir, monoclonal antibodies, antisense RNA, corticosteroids, convalescent plasma and vaccines are being evaluated. The large numbers of therapeutic interventions aim to define the most efficacious regimen. The aim of this article is to describe the treatment strategies that have been used for COVID-19 patients and review all the available literature.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/therapy , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , COVID-19 Vaccines/therapeutic use , Chloroquine/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive/methods , Palliative Care , Pyrazines/therapeutic use , SARS-CoV-2/immunology , Treatment Outcome , COVID-19 Serotherapy
17.
Clin Exp Med ; 20(4): 493-506, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-679729

ABSTRACT

Although COVID-19 presents primarily as a lower respiratory tract infection transmitted via air droplets, increasing data suggest multiorgan involvement in patients that are infected. This systemic involvement is postulated to be mainly related to the SARS-CoV-2 virus binding on angiotensin-converting enzyme 2 (ACE2) receptors located on several different human cells. Lung involvement is the most common serious manifestation of the disease, ranging from asymptomatic disease or mild pneumonia, to severe disease associated with hypoxia, critical disease associated with shock, respiratory failure and multiorgan failure or death. Among patients with COVID-19, underlying cardiovascular comorbidities including hypertension, diabetes and especially cardiovascular disease, has been associated with adverse outcomes, whereas the emergence of cardiovascular complications, including myocardial injury, heart failure and arrhythmias, has been associated with poor survival. Gastrointestinal symptoms are also frequently encountered and may persist for several days. Haematological complications are frequent as well and have been associated with poor prognosis. Furthermore, recent studies have reported that over a third of infected patients develop a broad spectrum of neurological symptoms affecting the central nervous system, peripheral nervous system and skeletal muscles, including anosmia and ageusia. The skin, the kidneys, the liver, the endocrine organs and the eyes are also affected by the systemic COVID-19 disease. Herein, we provide a comprehensive overview of the organ-specific systemic manifestations of COVID-19.


Subject(s)
Coronavirus Infections/pathology , Gastrointestinal Tract/pathology , Heart/virology , Lung/pathology , Myocardium/pathology , Nervous System/pathology , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Gastrointestinal Tract/virology , Humans , Lung/virology , Nervous System/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL